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A parametric study of composite strips leads to systems of partial differential equations,
coupled through interface conditions, that are naturally solved in Laplace transform
space. Because of the complexity of the solutions in transform space and the potential
variations due to geometry and materials, a systematic approach to inversion is neces-
sarily numerical. The Dubner-Abate-Crump (DAC) algorithm is the standard in such
problems and is implemented. The presence of discontinuous wavefronts in the problems
considered leads to Gibbs phenomenon; which, in turn, overestimates the values of max-
imum stress. These errors are mitigated by use of Lanczos’ σ-factors, which combine

naturally with the DAC algorithm.

Keywords: Inverse laplace transform; Gibbs phenomenon; viscoelasticity; waves.

1. Introduction

The Laplace transform has proven to be the most natural method for solving
the classical initial value problems of dynamic viscoelasticity. The transformation
of a viscoelastic initial-boundary value problem (IBVP), by the correspondence
principle, is an elastic boundary value problem (BVP), for which the solution
is easily constructed. The difficulty then lies in the inversion of this trans-
form. Although many methods exist for numerical inversion of Laplace trans-
forms [Laverty (2003)], the Dubner-Abate-Crump (DAC) algorithm [Crump (1976);
Dubner and Abate (1968); Durbin (1974)] has proven to be one of the simplest,
yet most robust methods. Its implementation can be achieved in a computer
program consisting of just a handful of lines. Its effectiveness can be measured

57
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by the frequency of its use, [Abate and Whitt (1995); Chen and Chou (1998);
Frolov and Kitaev (1998); Georgiadis (1993); Georgiadis and Rigatios (1996);
Georgiadis et al. (1999)].

Despite all its strengths, the DAC algorithm has one shortcoming within the
context of wave propagation, Gibbs phenomenon, [Georgiadis et al. (1999); Laverty
(2003)]. The algorithm itself is a construction of an approximate Fourier Series
based upon Laplace transform data. Therefore, Gibbs phenomenon will be present
at any discontinuity. In general, this will lead to over-estimation of the magnitude
of a wavefront in the neighborhood of 10%. This is an unacceptable amount of
error when considering optimization problems, such as those considered in [Velo
and Gazonas (2003)], where the maximum stress of a two-layered elastic strip is
optimized as a function of the impedance ratio of the two materials.

Our goal is to use the most natural analytic construction — the Laplace trans-
form — to examine problems similar to Velo and Gazonas, but using viscoelastic
strips. Since analytic inversion of the transforms is impractical for such a large
class of problems, we will use the DAC algorithm. The problem of Gibbs phe-
nomenon appears immediately when we attempt to verify the results for the elas-
tic strips. In a review article by Gottlieb and Shu [1997], several methods are
described for the mitigation of the Gibbs phenomenon, which were sorted into two
classes; filter methods and expansion in orthogonal polynomials. We have found
that the filter methods can be implemented very naturally with the DAC algo-
rithm. Furthermore, the use of an expansion in a different basis has two draw-
backs from our perspective. First, it requires the computation of the expansion
coefficients in the new basis based on the Fourier expansion. Evaluation of these
integrals must be done numerically and is a relatively high cost computation com-
pared with the simplicity of the DAC algorithm. Second, the location of discon-
tinuities needs to be known in advance to achieve rapid convergence of the new
expansion. We are interested in scattering problems where tracking wavefronts
(discontinuities) is not practical. Therefore, we have chosen to mitigate the Gibbs
phenomenon via the filter methods; specifically, Lanczos’ σ-factors, [Lanczos (1966);
Gottlieb and Shu (1997)]. The adjustment to the standard DAC algorithm is easy to
program and does not add appreciably to the computational burden of the inversion.

2. The Elastic/Elastic Strip

The following question was posed (and answered) by Velo and Gazonas [2003]: Can
we find an impedance ratio for two perfectly bonded elastic strips such that the
maximum stress propagated in each layer (strip) will be a minimum? The answer
is yes. In fact, there exists an infinite sequence of discrete impedance ratios that
satisfy this requirement. In this section, we attempt to verify this result via the
DAC algorithm.

Consider the following coupled initial boundary value problems (IBVPs). The
region 0 < x < L/2 will be referred to as layer 1. A step in stress is applied to this
layer at x = 0. The displacement in layer 1 is denoted by u1(x, t) and the elastic



September 11, 2006 18:8 WSPC/IJCM-j050 00084

An Improvement to the Fourier Series Method for Inversion of Laplace Transforms 59

modulus and density are E and ρ, respectively. The partial differential equation
(PDE) satisfied by u(x, t) is

ρ
∂2u1

∂t2
= E

∂2u1

∂x2
, 0 < x < L/2, t > 0, (1)

0 = u1(x, 0), 0 < x < L/2, (2)

0 =
∂u1

∂t
(x, 0), 0 < x < L/2, (3)

Σ0H(t) = −E
∂u1

∂x
(0, t), t > 0, (4)

Layer 2 is the region L/2 < x < L. The displacement in layer 2 is denoted by
u2(x, t), the elastic modulus and density are E/α and ρ/α, respectively. The PDE
for u2(x, t) with the right end (x = L) fixed is

ρ

α

∂2u2

∂t2
=

E

α

∂2u1

∂x2
, L/2 < x < L, t > 0, (5)

0 = u2(x, 0), L/2 < x < L, (6)

0 =
∂u2

∂t
(x, 0), L/2 < x < L, (7)

0 = u2(L, t), t > 0. (8)

To completely determine the solutions to Eqs. (1) through (8) we assume an ideal
bonding at the interface: the displacement and stress are assumed continuous at
x = L/2.

u1(L/2−, t) = u2(L/2+, t), (9)

E
∂u1

∂x
(L/2−, t) =

E

α

∂u2

∂x
(L/2+, t). (10)

With these materials the impedance ratio between layers is α and the wave
speed, c, is the same in both layers.

c =
√

E/ρ. (11)

We investigate how the impedance ratio will effect the maximum stress that
will be propagated in each layer. To construct a solution we consider the associated
BVPs and interface conditions in Laplace transform space

s2û1(x; s) = c2û′′
1(x; s), 0 < x < L/2,

Σ0

s
= −Eû′

1(0; s), (12)

s2û2(x; s) = c2û′′
2(x; s), L/2 < x < L, 0 = û2(L; s), (13)

û1(L/2−; s) = û2(L/2+; s), (14)

Eû′
1(L/2−; s) =

E

α
û′

2(L/2+; s), (15)

where s is the transform variable, a prime denotes differentiation with respect to
x and all transformed quantities are denoted by hats. The solution to Eqs. (12)
through (15) can be constructed by elementary means, then the transform of the
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stress in each layer is given by Eqs. (16) and (17). The stresses will be inverted
using the DAC algorithm.

Eû′
1(x; s) =

Σ0

s

(
1 − α

2

)(
sinh( sL

c ) sinh( sx
c )

cosh2( sL
2c ) + α sinh2( sL

2c )

)
− Σ0

s
cosh

(sx

c

)
, (16)

E

α
û′

2(x; s) =
Σ0

s

(
cosh( s

c (x − L))
cosh2( sL

2c ) + α sinh2( sL
2c )

)
. (17)

Figure 1 shows the stress-time history for α = 2 at the midpoint of each layer.
The horizontal line inserted at a stress of 2Σ0 (relative stress of 2) is of special
importance. It has been shown [Velo and Gazonas (2003)] that the stress in layer 1
will never exceed 2Σ0 and the maximum stress in layer 2 is bounded below by
2Σ0. This is verified in layer 2, where we see that the maximum stress is clearly
greater than this value. However, there are times when the stress in layer 1 is
beyond this limit. This is due to Gibbs phenomenon at the discontinuities in stress
and is the drawback to the DAC algorithm that we wish to address in this paper.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

ct/L

Σ 
/ Σ

0

Stress in Layer 1
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2

2.5
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Σ 
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Fig. 1. The time history of stress at the layer midpoints for an impedance ratio of α = 2 using the
DAC algorithm with 256 terms and tol = 10−3.
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Fig. 2. The time history of stress at the layer midpoints for an impedance ratio of α = 3 using the
DAC algorithm with 256 terms and tol = 10−3.

In Fig. 2 the impedance ratio has changed to α = 3 and the Gibbs phenomenon
in the layer 1 stress is more pronounced. Clearly, the DAC approximation is not
faithful to the known bounds of maximum stress in the presence of discontinuous
wavefronts.

Figure 3 is a graph of the maximum stress in each layer, as a function of α. The
limit of 2Σ0 is clearly marked and we can see that as α grows there is no simple
expression that can capture the values of the maximum stress. There is, however,
clear values at which the maximum stress in layer 2 is at a minimum. It can be
shown [Velo and Gazonas (2003)] that there exist an infinite number of discrete
values of α for which the maximum stress in layer 2 will equal the limiting value
of 2Σ0. Our values never reach all the way down to 2Σ0 (and our layer 1 values
are seldom below 2Σ0) because of Gibbs phenomenon. Qualitatively, the shape of
our graph agrees with that in Velo and Gazonas [2003]; and quantitatively, the
critical values of α agree, but the DAC algorithm has not quantitatively captured
the optimum values of maximum stress.
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Fig. 3. The maximum stress at the layer midpoints as impedance ratio varies. Solutions were
constructed using the DAC algorithm with 256 terms and tol = 10−3.

3. Improvement of the DAC Algorithm

Given the Laplace transform f̂(s) we approximate the time domain function f(t)
with f̄(t).

f̄(t) =
ekt

T

[
f̂(a)

2
+

∞∑
n=1

Re
[
f̂

(
a + i

nπ

T

)]
cos
(

nπ

T
t

)

−
∞∑

n=1

Im
[
f̂

(
a + i

nπ

T

)]
sin
(

nπ

T
t

)]
. (18)

When we truncate the series Eq. (18), the function f̄(t) is the DAC approximation
to f(t).

Equation (18) is a Fourier Series for the function f̄(t) on the interval (0, T ).
There are two parameters that we can control to achieve a desired accuracy; the
truncation point N and the real number k. Obviously, as we increase N , we will
increase the accuracy of our approximation. To achieve a given relative error we
choose k according to

k = ξ − 1
2T

ln(tol), (19)
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where tol is the bound on the relative error and ξ is a real number chosen slightly
larger than the real part of the poles of f̂(s). When we know that f(t) is bounded,
we can choose ξ = 0.

Equation (18) can be derived directly from a trapezoid rule approximation of
the exact inversion integral. However, determination of the parameter k can only be
achieved through a more careful analysis based on the periodic extensions of f(t)
and the associated exact Fourier Series [Crump (1976); Dubner and Abate (1968);
Durbin (1974)].

The Gibbs phenomenon, visible in Figs. 1 and 2, is the source of the errors in
Fig. 3 that keep us from making accurate predictions of the smallest maximum
stress propagated in layer 2 for a given value of α. However, methods do exist for
mitigating the overshoot of Gibbs phenomenon, [Gottlieb and Shu (1997)]. For our
purposes, the most effective approach is to implement a filter method. Although
many filters exist and are all equally simple to include in our inversion algorithm
we have chosen Lanzcos’ σ-factors. Its performance makes it a good representative
for the general class of filter methods.

To implement the σ-factors, we multiply each coefficient of the Fourier approx-
imation Eq. (18) by a weight σn.

σn =
sin
(

nπ
N

)
nπ
N

, (20)

where n is the series index and N is the index value at which we truncate the series.
These σ-factors do not effect the convergence of the series, but they do smooth out
the Gibbs phenomenon. Figure 4 gives the numerical inversion of Eqs. (16) and (17),
using the same numerical parameters and impedance ratio as used in Fig. 2, but
including the σ-factors.

In Figs. 2 and 4, we used one of the optimum values of the impedance ratio,
α = 3. We know that the stress should not cross 2Σ0 in either layer. It is clear that
this fact is verified with our numerical inversion when we use the σ-factors (Fig. 4).

Now, we re-evaluate the maximum stress in each layer as α is varied. Figure 5 is a
qualitative and quantitative, faithful reproduction of the analytical results obtained
using the method-of-characteristics [Velo and Gazonas (2003)].

4. An Elastic/Viscoelastic Strip

With the confidence that the σ-factors provide us with a means to make accurate
inversions, even in the presence of discontinuous wavefronts, we proceed to investi-
gate a composite strip that is composed of an elastic and a viscoelastic material.

Consider a two layered composite occupying the region 0 < x < L where layer 1
is elastic and layer 2 is viscoelastic. We will place their interface at x = l. We
maintain the notation that u1 will be the displacement in layer 1 and u2 is the
displacement in layer 2. However, we must now introduce new notations for the
density and stress. The density in layer 1 will be denoted by ρ; in layer 2 it will be
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Fig. 4. The time history of stress at the layer midpoints for an impedance ratio of α = 3 using the
DAC algorithm with Lanczos’ σ-factors, 256 terms and tol = 10−3.

scaled by a factor of α. The stress functions will be Σ1(x, t) and Σ2(x, t) in layers
1 and 2, respectively. Using this notation, the IBVPs are:

ρ
∂2u1

∂t2
= E

∂2u1

∂x2
, 0 < x < l, t > 0, (21)

0 = u1(x, 0), 0 < x < l, (22)

0 =
∂u1

∂t
(x, 0), 0 < x < l, (23)

Σ0H(t) = −E
∂u1

∂x
(0, t), t > 0. (24)

ρ

α

∂2u2

∂t2
=

∂Σ2

∂x
, l < x < L, t > 0, (25)

0 = u2(x, 0), l < x < L, (26)

0 =
∂u2

∂t
(x, 0), l < x < L, (27)

0 = u2(L, t), t > 0. (28)



September 11, 2006 18:8 WSPC/IJCM-j050 00084

An Improvement to the Fourier Series Method for Inversion of Laplace Transforms 65

0 1 2 3 4 5 6 7 8 9 10
1.8

2

2.2

2.4

2.6

2.8

3
Σ/

Σ 0

α

Layer1 
Layer2 

Fig. 5. The maximum stress of each layer (measured at the layer midpoint) as a function of
impedance ratio, α, using Lanczos’ σ factors. All approximations were made using N = 256 and
tol = 10−3.

We need an equation relating the stress τ and displacement w in layer 2.
For a linear viscoelastic solid this can be accomplished using an hereditary
integral

Σ2(x, t) =
∂u2

∂x
(x, t)G(0+) +

∫ t

0+
G′(t − τ)

∂u2

∂x
(x, τ)dτ, (29)

where G(t) is the relaxation modulus and prime denotes differentiation with respect
to the argument. Equivalent forms of this constitutive law exist; for instance, after
an integration by parts

Σ2(x, t) =
∫ t

0+
G(t − τ)

∂2u2

∂x∂τ
(x, τ)dτ. (30)

However, the anticipated discontinuities in strain, wx, make Eq. (29) more appropri-
ate. There also exist differential forms of the constitutive law, but the convolution
form of the hereditary integral formulation is convenient when the Laplace trans-
form is applied.

To complete the model we add the interface conditions

u1(l−, t) = u2(l+, t), (31)

Σ1(l−, t) = Σ2(l+, t). (32)
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Taking the Laplace transform of Eqs. (29), (32), and (21) through (28), we get the
following BVPs and interface conditions for the transformed displacements.

s2û1(x; s) = c2û′′
1(x; s), 0 < x < l,

Σ0

s
= −Eû′

1(0; s), (33)

s2û2(x; s) = ĝ2(s)û′′
2 (x; s), l < x < L, 0 = û2(L; s), (34)

û1(l−; s) = û2(l+; s), (35)

Eû′(l−; s) =
ρĝ2(s)

α
û′

2(l+; s), (36)

where c is the elastic wave speed, same as (11), Ĝ(s) is the Laplace transform of
the relaxation modulus, and ĝ(s) is given by

ĝ(s) =

√
αsĜ(s)

ρ
. (37)

The transformed stresses are

Σ̂1(x; s) = −Σ0

s



(

s2Ĝ(s)
ĝ(s)

)
cosh

(
s

ĝ(s) (l − x)
)

sinh
(

sx
c

)
sinh

(
sl
c

)
d(l)

+
sinh

(
s
c (l − x)

)
sinh

(
sl
c

)

, (38)

Σ̂2(x; s) = −Σ0

s



(

s2Ĝ(s)
ĝ(s)

)
cosh

(
s

ĝ(s) (L − x)
)

d(l)


 , (39)

where

d(l) =
s2Ĝ(s)
ĝ(s)

cosh
(

sl

c

)
cosh

(
s

ĝ(s)
(L − l)

)

+
sE

c
sinh

(
sl

c

)
sinh

(
s

ĝ(s)
(L − l)

)
. (40)

Complicated expressions, such as Eqs. (38) through (40), were our original moti-
vation to investigate numerical inversion techniques and have ultimately led us to
the DAC algorithm. When we consider the daunting task of analytic inversion of
these expressions, and then consider the variations in materials, characterized by
G(t), and configurations, more layers and varying widths, pragmatism demands
numerical solution. Modification of the most appropriate technique, the DAC algo-
rithm, is the purpose of this current study.

Figure 6 is the result of our modified DAC algorithm applied to Eqs. (38) through
(40) using the relaxation modulus

G(t) = G∞ + (G0 − G∞) e−βt. (41)

Figure 6 also includes the solution for the same problem using the explicit finite
element code DYNA3D [Whirley and Engelmann (1993)]. The parameter values are
set to: l = L/2, G0 = E, G∞ = 0.7E and β = 1. We can see in Fig. 6 that the
two solution methods independently constructed identical solutions. We can also
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Fig. 6. Corroboration of the stress time history in the viscoelastic layer (measured at the layer
midpoint) of an elastic/viscoelastic composite using the DAC algorithm (with σ smoothing) and
DYNA3D. Layer 1 is elastic and layer 2 is a standard linear viscoelastic solid. The DAC approxi-
mations were made using N = 256 and tol = 10−3.

Fig. 7. Stress measured at the midpoint of the viscoelastic layer of the elastic/viscoelastic composite
using the DAC algorithm with and without Lanczos’ σ-factors.
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see the effect of the viscoelastic solid is to “soften” the wavefronts and to dissipate
the energy.

Figure 7 focuses on the first peak in Fig. 6. However, in Fig. 7 we have solved the
same problem using only the DAC algorithm, with and without Lanczos’ σ-factors.
It is clear that the Gibbs phenomenon makes a noticable contribution to the peak
stress, invalidating the measurement. Thus, the adapted algorithm we employ in
this study is an essential part of any quantitative investigation of optimal designs.

5. Conclusion

Any parametric study of composite designs using viscoelastic materials will nat-
urally lead to expressions such as Eqs. (38) and (39). The exact inversion of
these transforms is an impractical task. After employing the most robust numerical
method available, the DAC algorithm, we found that the Gibbs phenomenon cor-
rupts our results to the extent that they do not match known, analytic solutions. Our
search to mitigate these effects produced the Lanczos σ-factors: a general technique
developed for use in Fourier series synthesis of functions and completely compati-
ble with the DAC algorithm. The results of the DAC algorithm coupled with the
σ-factors verified previous results and have provided means for further studies in
viscoelastic composites.
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